Home » Volume 31, 2016 » Issue No. 1
Investigation of interfibre joint failure and how to tailor their properties for paper strength
Mikael S. Magnusson
The key property for the load carrying capacity of paper materials is the interfibre joint strength. Due to the difficulty of testing the strength of such microscopic entities, the typical approach is to test isolated fibre-fibre crosses. In such experiments the joint is but one component of the tested structure and the flexural compliance of the long fibre segments results in a mixed mode of loading. Furthermore, the details of the failure mechanisms of such joints are as of yet unknown. A continuum description of the paper sheet is often insufficient to explain governing mechanisms when properties of the underlying structure are changed by mechanical or chemical modifications. Therefore network models are often used to take into account the underlying mechanisms. However, network models in turn rely on the properties of the fibres and of the interfibre joints.
This paper aims to characterize the damage behaviour of isolated fibre-fibre crosses from three approaches: identifying typical damage features from an extensive number of mechanical tests of isolated fibre-fibre crosses; study the applicability of using cohesive zones to model the failure behaviour of inter-fibre joints; and, to study the influence of fibre and joint properties to the load carrying capacity of fibre-fibre crosses.
The results indicate that the strength in the normal direction is significantly lower than in the shear direction and means on how to tailor the properties of fibres and joints for increasing the load carrying capacity is suggested.
Cohesive zone modelling, Fibre-fibre joints, Interfibre joint strength, Paper mechanics
22 EUR (excl. VAT) Buy PDF
Nordic Pulp & Paper Research Journal (NPPRJ) is an international scientific magazine covering science and technology for the areas of wood or bio-mass constituents, pulp and paper and including new fiber-based materials, recovery and by-products from pulping processes, bio-refining and energy issues. Articles meeting required scientific standards are accepted from any continent.
Open Access: Articles not available through Gold Open Access may be purchased by credit card as a pdf file, to be downloaded within 24 h after ordering, at a price of 22 EUR per article. (Value added tax may apply depending on your location, which you enter at payment logout.) Such articles have Green Open Access, i.e. authors may share articles on their personal non-commerical homepage immediately after publication on the website and download them to non-commercial hosting platforms one year after publication in a full issue of NPPRJ.
ISSN: 0283-2631